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SUMMARY

In this report the results of an experimental investigation under-

taken to determine the frequency dependence of the response factors of

various gaseous propellant rocket injectors subject to axial instabili-

ties are presented. The injector response factors were determined,

using the modified impedance-tube technique, under cold-flow conditions

simulating those observed in unstable rocket motors. The tested in-

jectors included a gaseous-fuel injector element, a gaseous-oxidizer

injector element and a coaxial injector with both fuel and oxidizer

elements. Emphasis was given to the determination of the dependence of

the injector response factor upon the open-area ratio of the injector,

the length of the injector orifice, and the pressure drop across the

injector orifices. The measured data are shown to be in reasonable

agreement with the corresponding injector response factor data predict-

ed by the Feiler and Heidmann model.
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INTRODUCTION

The stability of the combustor of a rocket motor depends upon

the wave-energy balance between the various gain and loss mechanisms

that are present in the system. The primary source of wave-energy

gain is the combustion process. Wave-energy losses are provided by

the mean flow, the nozzle, and mechanical damping devices (e.g., acous-

tic liners) which may be present in the system. As the stability of a

rocket motor depends upon the difference between the gain and loss

mechanisms, it is of utmost importance that quantitative data capable

of describing the damping provided by the loss mechanisms and the driv-

ing provided by the unsteady combustion process must be available.

Furthermore, an understanding of the dependence of these gain and loss

mechanisms upon engine design parameters and operating conditions is

needed. The investigation described in this report was undertaken for

the purpose of obtaining a better understanding of the driving provided

by the unsteady combustion process; specifically, this investigation was

concerned with the acquisition of experimental data that quantitatively

describes the manner in which various injector designs affect the energy

gain provided by the unsteady combustion process.

The injector elements of a gaseous rocket motor control the steady

state gas flow and heat transfer patterns inside the combustion chamber.

In addition, the injector design influences the response of the flow

rate through the injector to combustion chamber disturbances. The

characteristics of this response have a profound effect upon engine

stability. Customarily, the influence of the injector upon the chamber

stability is described by an injector response factor which describes

the manner in which the propellants' burning rate responds to a given

pressure oscillation in the chamber. The injector response factor

basically accounts for the dependence of the unsteady burning rate up-

on both the unsteady combustion process and unsteady flow of propel-

lants through the injector elements. This response factor can be used

to evaluate the energy added by the combustion process into the distur-

bance in the combustion chamber. It can also be used as the injector



end boundary condition that needs to be satisfied in a stability analy-

sis of a gaseous rocket combustion chamber.

Most of the available experimental investigations1 - 7 on the be-

havior of gaseous propellant injectors were concerned with the steady

operation of these devices with little or no consideration being given

to the corresponding unsteady problem. In contrast, the analytical

studies of Feiler and Heidmann were concerned with the predictions of

the characteristics of the response factor of a gaseous injector ele-
8,9ment. In the Feiler and Heidmann analysis, a single gaseous hydro-

gen injector element is modeled as a combination of lumped flow elements.

The desired expressions for the injector response factor are then ob-

tained by solving the conservation equations that describe the unsteady

flow inside the various components of the injector. The resulting ex-

pressions describe the dependence of the injector response factor upon

the injector geometry and the flow conditions in the chamber and the

injector. In this analytical model, combustion is assumed to be con-

centrated in front of the injector face and the effects of mixing and

chemical reactions are accounted for by the introduction of an as yet

unknown time delay b. The period Tb describes the time required for

the gaseous oxidizer and fuel streams to mix and burn. In Ref. 10, the

Feiler and Heidmann predictions8 have been modified to account for the

compressibility of the gaseous streams flowing through the injector

elements.

The results of Refs. 8 and 10 indicate that for a given frequency

range and for certain ranges of the parameter Tb, various injector de-

signs can indeed result in the amplification of chamber disturbances.

When Tb is identically zero, which corresponds to the case of no com-

bustion present in the system, the results of Refs. 8 and 10 indicate

that under these conditions the injector acts as a mechanical damping

device; a situation that is to be expected from related studies of

Helmholtz resonators and acoustic liners.

Although the predictions of the Feiler and Heidmann analysis have

been known for a number of years, they have never been verified experi-

mentally. It is one of the objectives of this investigation to provide
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experimental data that could be used to check the validity of the

Feiler and Heidmann model. In addition, this investigation is concerned

with providing experimental data that will quantitatively describe the

manner in which various coaxial injector designs affect the stability

of gaseous propellant rocket motors. In pursuit of the above-mentioned

objectives, the response factors of a number of gaseous rocket in-

jector configurations have been measured under cold-flow conditions

simulating those observed in rocket motors experiencing axial insta-

bilities. Specifically, the response factor of configurations that

simulate the flow conditions in a gaseous-fuel injector element, a gas-

eous-oxidizer injector element, and a coaxial injector with both fuel

and oxidizer elements have been determined using the modified impedance-

tube technique. The measured injector response factor data are pre-

sented and the results discussed in this report.

NOMENCIATURE

A area

C Capacitance, defined by Eq. (4)

c speed of sound

I Inductance, defined by Eq. (4)

L length of the injector orifice

leff effective orifice length given by Eq. (14)

M Mach number

N nondimensional injector response factor

P pressure

R Resistance, defined by Eq. (4)

V injector dome volume

W mass flow rate of propellant

Y admittance

y nondimensional admittance

C1 admittance parameter defined by Eq. (7)

Badmittance parameter defined by Eq. (8)

3



y specific heat ratio

8 equal to (P - P )/P

X wavelength

p density

a open-area ratio of the injector

T time lag

w angular frequency

Superscripts

(C) steady state quantity

( ) dimensional quantity

( ) ' perturbation quantity

Subscripts

( )b associated with the combustion process

( )c evaluated in the chamber

( )d evaluated in the injector dome

( )f associated with the fuel

( )ox associated with the oxidizer

( )s evaluated at the injector surface

( )l evaluated at injector orifice entrance

( )2 evaluated at injector orifice exit

ANALYTICAL CONSIDERATIONS

The ability to quantitatively describe the injector response factor

is of great practical importance since the combined response of the in-

jector flow rate and the combustion process to chamber disturbances is

the mechanism responsible for amplifying and maintaining combustion

instability oscillations. In an effort to develop an analytical tech-

nique for the prediction of the response factor of a gaseous injector,



Feiler and Heidmann 8, 9 analyzed in detail the unsteady flow

through the gaseous hydrogen injector element shown in

Fig. 1. Combustion is assumed to occur a certain distance downstream

of the injector exit plane and the response of the injector flow rate

to a small amplitude pressure oscillation in the chamber is determined

by analyzing the linearized conservation equations for each of the in-

jector components. Assuming that each of the injector components be-

haves as a lumped element, and applying the Laplace transform to the

linearized conservation equations, the relationships pres6nted in Fig. 1

are obtained. By appropriate manipulations of these equations and set-

ting the Laplace operator s equal to iw, which implies a sinusoidal

time dependence of the perturbations, the following expression for the

injector response factor was obtained:

N b=max i()
P P'

c cmax
max

where

-1
max (2)

2 b 2

max R2  - I +2 +

RIAP 1  P2 i

n *d 2

e = -W b -arctan RI (3)

C W I

and

C = pdV/y W ; I = W L/A1)/gP2 (4a)



AP1  ,,* _ AP2  -

* ) d - * 2 c/ 2

R= -*R = - /P (4bc)
d 2

P P2
S  / (4c)/

The quantity Tb appearing in Eq. (3) is the residence time of a propel-

lant mass element in the combustor prior to its combustion; "b is

identically zero when there is no combustion in the system. The para-

meters appearing in Eq. (4) depend upon the injector geometry and engine

operating conditions, and their influence upon the injector element

response factor is also of interest to rocket designers.

Expressions similar to those developed above for the gaseous-

fuel injector element can also be developed for the gaseous-oxidizer

injector element. The total response, Nt, of a coaxial gaseous in-

jector element can then be obtained, by substituting the expressions

for the fuel and oxidizer response factors into the following equation:

Wt (W (5
Nt P (P 'I/P (P '

t t

where Nox and Nf respectively represent the response factors of the

oxidizer and fuel injector elements while WoxWt and f/Wt represent

the ratios of the mean oxidizer and fuel flow and the total mean flow,

respectively.
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RESPONSE FACTOR DETERMINATION

The required injector response factor data were determined in this

investigation from injector admittance data measured by use of the

modified impedance-tube technique. The impedance tube setup shown in

Fig. 2, consists of a 6-inch diameter cylindrical tube with a sound

source capable of generating harmonic waves of desired frequency placed

at one end. The injector element under investigation is placed at the

other end. During an experiment, the flow of a gaseous propellant

through the injector is simulated by the flow of air. Regulating

valves are provided to ensure that the pressure drop across the injector

orifices is maintained at a required value. By means of an acoustic

driver, a standing wave pattern of a given frequency is excited in the

tube and a microphone probe is traversed along the tube to measure the

axial variation of the standing pressure wave pattern. As explained

in the next section, the admittance of the injector end of the impedance-

tube is determined from the measured axial variation of the standing

pressure wave. The frequency dependence of the admittance and the re-

sponse factor of the injector is determined by repeating the experiment

at different frequencies.

The first step in the determination of the injector response fac-

tor N consists of the measurement of the "average" surface admittance

Y at the injector end of the modified impedance tube. The "average"

surface admittance is defined as the ratio of the "average" normal

velocity perturbation across the injector surface and the local pres-

sure perturbation; that is:

u n
Ys S (6)

s

The admittance Ys is a complex number whose real and imaginary parts

describe the relationships that exist at the location under consider-

ation between the amplitudes and phases of the velocity and pressure

perturbations.

7



From a physical point of view it is more satisfying to describe

the admittance by means of two parameters a and B which respectively

describe changes in amplitudes and phases between the incident and

reflected pressure waves at the location under consideration; that is:

NAplitude of Reflected Pressure Wave] -2ra (
Amplitude of Incident Pressure Wave jInjector e (7)

Face

Phase change Between Incident and] = w(1 + 20) (8)

Reflected Pressure Waves Injector
Face

The parameter B appearing above satisfies the conditionljl < 0.5.

The expressions required for the calculation of the injector sur-

face admittance are obtained from solutions of the system of conser-

vation equations which describe the behavior of small amplitude, one-

dimensional waves inside an impedance-tube containing a steady one-

dimensional flow. These solutions are required to satisfy an admit-

tance boundary condition at the injector surface in terms of the as yet

unknown parameters a and 8. The resulting expressions (See Ref. 12 for

detailed derivations of these solutions), describing the time and space

dependence of the pressure and velocity perturbations at the injector

surface, are substituted into Eq. (6) to obtain an expression for the

injector surface admittance. Normalizing the resulting expression

with the characteristic admittance Y = 1/p c of the gas medium, the
g

following expression for the nondimensional injector surface admittance

y is obtained 2 :

Y

s F + il = coth Tw(o - io) (9)

g

12
It can also be shown that the parameters oa and B, which appear

in Eqs. (7), (8) and (9) must satisfy the following relationships be-

8



tween variables describing the characteristics of the standing wave pat-

tern:

rP . 1
1 I mn I 2Zin

l n tZ anh* (10)
P 
max i

In impedance-tube experiments and in the present study, the relation-

ships presented in Eq. (10) are used to determine the admittance

variables a and B. The procedure leading to the determination of a and

B consists of measuring (a) the distance Z . from the injector surface
mln

to the first pressure amplitude minimum and (b) the ratio oflP min. /I a

of the minimum pressure amplitude to the maximum pressure amplitude.

The resulting values of a and B are then substituted into Eq. (9) to

obtain the injector surface admittance.

From the measured injector surface admittance ys, the injector

orifice admittance y2 is determined by using the following relation-

ship obtained from the perturbed form of mass conservation law:

(u ' A *= (u*),
(u*)s s = (u2A2

which upon dividing by (P*) gives

y 2 = ys/o (1)

where a = A2/As is the injector open-area ratio. In deriving Eq. (11)

the gas has been assumed to be incompressible; an allowable assumption

for the situation under consideration.

An expression relating the nondimensional response factor N to the

nondimensional admittance y is obtained from the definitions of these

two quantities as follows:

9



W'n -n u n *1

*1

P - -

N = + "

P P pu* P P

c +M
YM P

yM

- 1 (y + ,. n) (12)

In deriving Eq. (12) it has been assumed that the gas is perfect and

that the oscillations are isentropic. The response factor N of the

test injectors is finally obtained by substituting the measured ori-

fice admittance y2 into Eq. (12) which can be rewritten in the follow-

ing form for the experimental setup of this investigation:

N = 1 -- + (13)

TEST INJECTORS

In order to obtain the needed data, the frequency dependence of

the response factors of the injector configurations shown in Figs. 3

through 6 have been determined. The characteristic dimensions of these

injectors, namely, the injector orifice open-area ratio, the orifice

length, and the injector dome volume are also presented in the above-

mentioned figures.

Injector configurations 1 and 2 were designed to simulate the flow

behavior through gaseous-fuel injector elements. The dimensions of

these configurations were chosen to provide data capable of determining

the effect of the injector open-area ratio upon the injector response

factor. Injector configurations 3 through 5 were designed to simulate

the flow behavior in gaseous-oxidizer injector elements, and their

10



dimensions were chosen to allow the determination of the dependence of

the injector response factor upon the orifice length. Injector con-

figuration 6, shown in Fig. 6, consists of a combination of configura-

tions 1 and 3. This configuration was designed to simulate the flow

behavior in a coaxial injector of a gaseous rocket motor. This injector

configuration was tested to check the validity of Eq. (5) by comparing

its measured response factors with predicted response factor data ob-

tained by substituting the individually-predicted response factors of

configurations 1 and 3 into Eq. (5).

RESULTS

Introduction

The results presented in this section were obtained by measuring

the admittances and response factors of the test injectors over the

frequency range of 150 to 800 Hz which included their resonant frequency.

To establish the repeatability of the experimental data, the frequency

dependence of the response factor one of the test injectors was measured on

two different occasions and the response factor data obtained in these

tests are presented in Fig. 7. An examination of this figure indicates

that the measurement technique yields repeatable data. The scatter ob-

served in the measured values of the imaginary part of the response

factor is due to the fact that at the corresponding frequencies the

standing wave in the impedance tube had a flat minima and hence its

axial location could not be precisely measured.

Before presenting the results, it is necessary to point out a

difference between the geometrical configurations of the injector ele-

ments whose admittances were measured in this study and the injector

configurations considered in the theoretical model of Feiler and Heid-

mann. The theoretical analysis considers the behavior of a single

injector element and its predictions provide a response factor that is

valid at the exit plane of the injector orifice. As it would be ex-

tremely difficult to directly measure the response factor of a single

injector element, this study undertook the measurement of the response

1l



factors of configurations containing either 5 or 13 injector elements.

As stated earlier, the admittances measured in this study represent

"average" admittances over the tested injector surface. Hence, before/

any meaningful comparisons between the predicted and the measured sets

of admittance data can be made, the above-mentioned difference must be

suitably taken into consideration. This point was discussed in the

previous section where it was shown that by using mass conservation

considerations, this difference can be accounted for by multiplying the

theoretically predicted orifice admittances by the open-area ratio a

of the injector configuration. This step "averages" the predicted

orifice admittance over the injector surface. To illustrate this point,

the theoretically predicted frequency dependence of the admittances of

injector configuration 1 with a pressure drop 6 of 0.068 across the in-

jector orifices is presented in Fig. 8. The broken lines in this fig-

ure describe the admittances at the exit plane of the injector orifices

while the solid lines represent the "average" admittances of the injec-

tor surface. It is this "average" data which has to be compared with

the admittances measured during this investigation.

In the present study, the expressions provided by Feiler and

Heidmann8 have been slightly modified when used to compute the pre-

dicted admittances and response factors of the test injector config-

urations. This was necessitated by the observation that the measured

resonant frequencies of the tested injectors did not coincide with

their predicted values. This is illustrated by the data presented in

Fig. 9. The broken line in this figure describes the theoretically

predicted frequency dependence of the real and imaginary parts of the

response factor of one of the test injectors. An examination of this

figure indicates that while the two sets of data are similar in magni-

tude and shape, the observed injector resonant frequency is lower than

its predicted value. In an effort to explain this frequency shift,

use was made of knowledge developed in studies concerned with the be-

havior of Helmholtz resonators and acoustic linersl3, 14 where it has

been well known that the effective length of the slug of the gaseous

mass oscillating within the orifice is longer than the orifice length.

12



It is also well known that the resonant frequencies of Helmholtz

resonators and acoustic liners are inversely proportional to the square

root of the orifice length. This suggests that the actual length L of

the injector orifices should be replaced by an effective length 1eff

whenever it appears in the analytical expressions of the Feiler and

Heidmann analysis. From experimental reactance data of acoustic liners

13with apertures of various thicknesses, Garrison developed the follow-

ing empiricalrelation for the effective length 1eff:

leff = L + 0.85 1 - 0.70 - (14)

where D and D. are respectively the outer and inner diameters of the
o 1

orifices. Computing the predicted response factor data of the test

injector with L* replaced by the effective length 1 , the result in-
eff'

dicated by the solid line in Fig. 9 was obtained. The experimental

resonant frequency now is in better agreement with the predicted re-

sonant frequency than the original Feiler and Heidmann prediction.

Based on this result all of the theoretically predicted data presented

in the remainder of this report was obtained by suitably incorporating

Eq. (14) into the expressions of Ref. 8.

Comparison of Measured and Predicted Injector Admittances

The injector admittances measured during the course of the present

study are presented in Figs. 10 through 14 along with admittance data

predicted by the Feiler and Heidmann model. These figures describe,

respectively, the frequency dependence of the real and imaginary parts

of the surface admittances of injector configurations 1 through 5. An.

examination of these figures indicates a reasonable agreement between

the measured and predicted admittances. The discrepancy observed in

the data may be, among other factors, due to the fact that radial pres-

sure gradients were measured in the domes of some of the tested injec-

tors. These pressure gradients resulted in different pressure drops

across different injector elements. The possibility of such pressure

13



gradients is not considered in the theoretical model 8 and their effect

cannot be accounted for in predicting the injectors' response factors.

The theoretical admittances obtained in this study were computed as-

suming that the pressure drops across all of the injector orifices were

equal to the pressure drop measured across one of the outer injector

elements; an assumption that is contrary to the above-mentioned obser-

vations.

The response factors of injector configurations 1 through 5 were

obtained by substituting the measured admittance data into Eq. (13).

As suggested in Ref. 8, the response factor data for the injectors

tested in this program, with different pressure drops, are plotted in

Fig. 15 in terms of a generalized response factor p defined as

NP Real 2R2 R + (15)

d 2

and a generalized reactance Y defined as

( RI * RAP 1 AP
( VI /2 + 2  (16)

CWu P2 2

An examination of Fig. 15 indicates a reasonable agreement between the

experimental data and the predictions of the Feiler and Heidmann model.

Furthermore, this plot points to a convenient way for correlating and

plotting injector response factor data.

Effect of Injector Design Parameters Upon Injector Response Factors

During this investigation, the dependence of the injector response

factors upon the pressure drop across the injector orifices, the open-

area ratio of the injector and the length of the injector orifices were

investigated. The dependence of the injector response upon the pres-

sure drop across the injector orifices is demonstrated by the data pre-

sented earlier in Figs. 10 through 14. An examination of these figures

14



indicates that the injector admittances and response factors decrease

rapidly in magnitude with increase in pressure drop across the orifices.

Increase in pressure drop results in an increase in the resistance of

the injector plate. This decreases the coupling between the pressure

oscillation inside the injector dome and the pressure oscillation in

the combustor in front of the injector plate. The increase in the in-

jector pressure drop is observed, however, to have little effect upon

the resonant frequency of the injector.

In order to determine the dependence of the injector response fac-

tor upon the injector characteristic dimensions, the admittance data

measured with test configurations 1, 4 and 5 were substituted into Eq.

(13) and the response factors obtained are presented in Figs. 16 and

17. The data presented in Fig. 16 describes the effect of the open-area

ratio upon the injector response factor for a given orifice length and

mass flux through the injector orifices. An examination of Fig. 16 in-

dicates that an increase in the open-area ratio of the injector results

in an increase in the damping provided by the injector. In addition,

the data indicates an increase in the resonant frequency which is to be

expected from results of studies on Helmholtz resonantors. The increase

in the injector damping is due to the fact that for a given mass flux

an increase in the open-area ratio results in a decrease in the pres-

sure drop across the orifices. This in turn decreases the injector

resistance. From a stability point of view this seems to suggest that,

for a given mass flow across the injector plate, an injector should be

designed with as large an open-area ratio as possible. However, in

contemplating such changes in actual systems, one should also consider

how an increase in the open-area ratio would affect other gain or loss

mechanism in the system. For example, in an actual gaseous propellant

rocket motor a decrease in the pressure drop across the injector ori-

fices also affects the mixing rate and hence the propellants burning

rate.

For a given open-area ratio and pressure drop across the orifices,

data describing the effect of the orifice length upon the injector re-

sponse factor is presented in Fig. 17. An examination of this figure

15



indicates that an increase in the orifice length from 0.875" to 1.75"

resulted in a decrease in the resonant frequency of the injector.

Further examination of Fig. 17 indicates that although there is no ob-

servable change in the magnitude of the response factor at resonance,

an increase in the orifice length decreases the band width of the re-

sponse curve.

CONCLUSIONS

The measured data indicates that under the test conditions en-

countered in this study, there is reasonable agreement between the

measured injector response factors and those predicted by the Feiler

and Heidmann model. The good agreement observed between the measured

and predicted total response factors of coaxial injectors containing

both fuel and oxidizer elements suggests that the procedure suggested

by Feiler and Heidmann for calculating the total response factors from

individual injector response factor data is indeed valid.

The measured response factor data indicates that the orifice

length can be varied to shift the resonant frequency of the injector

without any change in the magnitude of the response factor at reso-

nance. However, changes in pressure drop across the orifices and the

open-area ratio of the injector were found to have a considerable ef-

fect on the injector response factor.

The injector configurations investigated in this program were

similar to Helmholtz Resonators with a steady through flow. The inter-

action of such a configuration with a sound wave is not expected to

produce any wave amplification, as was recognized by Feiler and Heidmann

and confirmed by the data reported in this report. When a time delay,

Tb, due to combustion is added to the theoretical model, the 
phase re-

lationship between the pressure and velocity perturbations required

for wave amplification (and instability) is obtained. To test the

latter hypothesis, and in the process measure the characteristic com-

bustion time, Tb, additional studies that will measure the response

factors of "reacting" gaseous rocket injectors, under a variety of

conditions simulating those observed in unstable engines, are needed.
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SECTION A-A

CONFIGURATION a() L (IN.) V (IN.)

1 4.7 0.875 27.6

Figure 3. Description of Injector Configuration 1.
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Figure 4. Description of Injector Configuration 2.
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5 10.2 1.75 28.2

Figure 5. Descriptions of Injector Configurations 3, 4 and 5.
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Figure 6. Description of Injector Configuration 6.
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Factor Data with and without Orifice

Length Correction.
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Figure 10. Frequency Dependence of the Surface

Admittances of Injector Configuration 1.
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Figure 11. Frequency Dependence of the Surface Admittances of

Injector Configuration 2.
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Figure 12. Frequency Dependence of the Surface

Admittances of Injector Configuration 3.
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Figure 13. Frequency Dependence of the Surface Admittances

of Injector Configuration 4.
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Figure 14. Frequency Dependence of the Surface Admittances

of Injector Configuration 5.

32



CONFIGURATION EXPT 6 CONFIGURATION EXPT 6

1 * 0.0017 4 0 0.017

* 0.0034 v 0.027

a 0.068 V 0.05

3 a 0.0017 5 0 0.05

0.0034 >0.084

V 0.068
2 0.0027 FEILER AND

. 0.001 HEIDMANN

0 0.0

-0.2

-0.6

-0.8

-1.0

-1.2

-1.4 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

REACTANCE Y

Figure 15. Generalized Response Factor Data Plotted

Against Reactance.
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Figure 16. Effect of Open-Area Ratio on

Injector Response Factor.
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